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SUMMARY

Characteristic formulations for boundary conditions have demonstrated their effectiveness to handle inlets
and outlets, especially to avoid acoustic wave reflections. At walls, however, most authors use simple
Dirichlet or Neumann boundary conditions, where the normal velocity (or pressure gradient) is set to
zero. This paper demonstrates that there are significant differences between characteristic and Dirichlet
methods at a wall and that simulations are more stable when using walls modelled with a characteristic
wave decomposition. The derivation of characteristic methods yields an additional boundary term in the
continuity equation, which explains their increased stability. This term also allows to handle the two
acoustic waves going towards and away from the wall in a consistent manner. Those observations are
confirmed by stability matrix analysis and one- and two-dimensional simulations of acoustic modes in
cavities. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many aspects of the turbulent compressible flows can be simulated with the help of large eddy
simulation (LES), which solves the filtered unsteady Navier–Stokes (NS) equations [1–4]. The
increasing available computational power allows to carry out LES in more and more complex flows
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STABILITY AND DISSIPATION OF WALL BCs 1135

and geometries [5–9]. One of the key issues to ensure the quality of the resolution is the accuracy of
the numerical scheme used to discretize the convective terms [10–13]. Families of discretizations—
such as compact schemes [14–16] or finite differences with summation-by-parts (SBP) properties
[17] on structured grids, or Taylor–Galerkin (TG) schemes [11, 18] on unstructured meshes—have
demonstrated their abilities to give satisfactory results. The treatment of the boundary conditions
(BCs) has also been a subject of intense research [19–24] since it can dramatically deteriorate
both the accuracy and robustness of the calculations. Non-reflecting BCs based on characteristic
treatment (wave analysis at boundaries) have been developed and are now commonly used to
model inlets and outlets of the computational domain and their influence on acoustics is now well
identified [25–28]. Despite the proven effectiveness of characteristic formulations, walls are still
often represented with Dirichlet BCs, where the velocity is set to zero and density at the wall
is obtained either using the continuity equation without characteristic treatment or specifying a
zero pressure gradient. The behaviour of wall BCs is a critical issue to study acoustic damping in
cavities (such as combustion chambers) and controlling the dissipation and dispersion of acoustic
waves at the walls is required in many present research fields such as combustion instability studies
[13, 29, 30]. This paper presents an analysis of wall BCs using both Dirichlet and characteristic
methods. Despite the apparent simplicity of specifying a wall BCs, results show that characteristic
methods differ from Dirichlet techniques at the walls and provide more stable schemes. This is
confirmed by a linear stability analysis incorporating wall BCs. Throughout the paper, wall means
any rigid obstacle in the computational domain (on the sides or inside the domain).

The formalism used for characteristic BCs is first recalled (Section 2) and compared with
Dirichlet BCs in the case of a solid wall (Section 3). Characteristic formulations lead to the
introduction of an additional BCs term (called the ABC term), supposed to be zero in the continuous
problem but not in its discretized counterpart. This term increases the stability of the scheme,
while not degrading its accuracy. A simple test case (one-dimensional acoustic cavity) is then
used to study the influence of the additional term (Section 4). Simulations and matrix analyses
confirm the theoretical observations showing the importance of considering characteristic treatment
for the hyperbolic part of wall BCs (Section 5). Finally, both wall BCs are used to simulate a
longitudinal/transversal 2D acoustic mode in an infinite duct to demonstrate the conclusions are
also valid in multidimensional applications (Section 6).

2. CHARACTERISTIC BOUNDARY CONDITIONS

The present description uses the Navier–Stokes characteristic BCs (NSCBC) method [20, 31, 32]
as a prototype for characteristic methods but the results below hold for most characteristic BCs.
The NSCBC method is a standard technique for compressible flows, which enables to correctly
handle the hyperbolic part of the NS equations [19, 20, 23, 33]. The NS equations are first recast,
in a new direct orthonormal basis (n, t1, t2), in the quasi-linear form with primitive variables:
V=(�,ux ,uy,uz, p)T with � being the density, (ux ,uy,uz) the x, y and z velocity components
and p the pressure. The n corresponds to the outward normal vector on boundaries ��. The new
set of equations is written

�V
�t

+( �AV ·n)
�V
�n

=T (1)
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1136 N. LAMARQUE ET AL.

where �AV is the Jacobian tensor of the primitive variables and T represents all other contribu-
tions (tangential, diffusion and source terms). Matrix �AV ·n is diagonalizable and (1) is strictly
hyperbolic. If W are the characteristic variables, then

�W
�t

+�
�W
�n

=TW (2)

and

�=diag(�+,�−,�t1,�t2,�S)=diag(un+c,un−c,un,un,un) (3)

where � is the diagonal matrix containing the velocities of the characteristic waves �W, while
TW contains the other contributions. We will use in the following, the notation L of [20] for the
wave amplitude variations:

�
�W
�n

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

L+
L−
Lt1

Lt2

LS

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(un+c)

(
�un
�n

+ 1

�c

�p
�n

)

(un−c)

(
−�un

�n
+ 1

�c

�p
�n

)

un
�ut1
�n

un
�ut2
�n

un

(
− 1

c2
�p
�n

+ ��

�n

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

where un,ut1 and ut2 are the components of the velocity in (n, t1, t2) and c is the local speed of
sound.

At the boundaries ��, ingoing and outgoing waves are identified. The outgoing waves come
from the inner domain �. Thus, they are not to be modified. On the other hand, ingoing waves
supply information from the outside and enable the imposition of BCs for the problem to be
solved. The NSCBC method is based on the use of the local one-dimensional inviscid (for LODI)
relations [20]. LODI relations allow to formulate the incoming wave amplitudes, depending on the
BCs. One should note that characteristic methods are better suited for linear small perturbations
(such as acoustic or entropy waves) and have sometimes difficulties with non-linear phenomena
[34]. At a wall (Figure 1), the entropy wave and the shear waves are zero: LS =Lt1 =Lt2 . The
LODI relation for velocity shows that the ingoing wave L+ must be such that: L+ =+L−. Note
that the wave L+ enters the domain and should not be evaluated with data obtained within the
domain.

A complete set of BCs is described in [20, 24, 28, 31, 35] and generalization to multicomponent
flows is given, for instance, in [32, 36]. The clear superiority of characteristic methods to model
partially or non-reflecting inlets or outlets is a theme vastly treated in the literature [20, 33]. Here,
we focus on the special case of solid walls (Figure 1), for which many authors use simpler methods
such as Dirichlet BCs.
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STABILITY AND DISSIPATION OF WALL BCs 1137

Figure 1. Characteristic waves at a wall.

Table I. Differences between Dirichlet and NSCBC methods.

Dirichlet NSCBC

Velocity un =0 L− =L+ ⇒�t un =0⇒un =0
Density Obtained from full continuity Obtained from full continuity equation

equation with un =0 AFTER ingoing wave modification
Pressure Obtained from full continuity and Obtained from pressure equation

energy equations with un =0 AFTER ingoing wave modification
Temperature Deduced from state equation Obtained from temperature equation

AFTER ingoing wave modification

Of course, both Dirichlet and characteristic methods eventually impose a zero velocity at the
wall. The differences between the methods come from the evaluation of pressure, density and
temperature at the wall. Table I summarizes the two methods for an adiabatic wall.

3. WALL TREATMENT

To illustrate the differences between Dirichlet and characteristic BCs, it is sufficient to consider
isentropic cases. Therefore, the following analysis focuses on the isentropic flows surrounded by
adiabatic walls. The conclusions are the same for non-isentropic flows.

3.1. Linearized Euler equations

The differences between Dirichlet and characteristic formulations for the walls are now brought
into focus. In the following, we consider one-dimensional flow to simplify the analysis. Therefore,
the existing waves are the acoustic waves L+ and L− (Figure 1). To understand how a full
NS solver using Dirichlet or characteristic BCs will perform, it is useful to linearize the Euler
equations around the state: (�,u)T=(�̄,0)T:

��′

�t
+ �

�x
(�̄u′)=0 (5)

��̄u′

�t
+ �p′

�x
=0 (6)
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1138 N. LAMARQUE ET AL.

The primed values refer to fluctuations around the mean state noted with an overbar. As the flow
is isentropic: p′ =�′c2 and the system of Equations (5)–(6) can be recast

�
�t

(
�′

u′

)
+
⎛
⎜⎝

0 �̄

c2

�̄
0

⎞
⎟⎠ �

�x

(
�′

u′

)
=
(
0

0

)
(7)

or in matrix form

�U
�t

+A
�U
�x

=0 (8)

where A is the flux Jacobian matrix.

3.2. Walls with Dirichlet formulation

Solid walls are usually treated with Dirichlet BCs

u·n=un =0 (9)

with u the velocity vector and n the outward pointing normal. At the wall, the continuity equation
becomes:

��

�t
=−

⎛
⎜⎜⎝un

��

�n︸ ︷︷ ︸
=0

+�
�un
�n

⎞
⎟⎟⎠=−�

�un
�n

(10)

Equation (10) is then used to obtain the density value at the walls. This is the value predicted by
the scheme at the wall.

It should be noted here that the same set of equations would have been obtained by imposing a
zero normal pressure gradient �p/�n=0 (Neumann condition), instead of a zero normal velocity.
Indeed, using this BCs, the initial condition at the wall (un(t=0)=0) and Equation (6) yields

�p
�n

=0 and un(t=0)=0 �⇒ un =0 (11)

which is Equation (9). Then, as un =0 and �p/�n=0, Equation (5) becomes Equation (10).
Therefore, Dirichlet BCs or zero pressure gradient BCs are equivalent on an adiabatic wall.

3.3. Walls with characteristic formulation

The characteristic formulation of NSCBC (Figure 1) makes use of the following LODI relations
for normal velocity and density:

�un
�t

+ 1

2
(L+−L−)=0 (12)

��

�t
+ �

2c
(L++L−)+LS =0 (13)
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STABILITY AND DISSIPATION OF WALL BCs 1139

Table II. Equations used to advance wall values in Dirichlet and NSCBC methods.

Dirichlet NSCBC

Velocity un =0 L− =L+ ⇒�t un =0⇒un =0

Density Obtained from ��
�t =−� �u

�n Obtained from ��
�t =−� �u

�n − c ��
�n︸︷︷︸

ABC term

From an acoustic point of view, a solid wall is a totally reflecting solid surface (zero admittance)
that imposes: L+ =L− and LS =0 (isentropic flow).

It is interesting to compare Equations (9)–(10) with Equations (12)–(13). Equation (12) with
L+ =L− entails

un(t)=un(t=0)=0 (14)

which is equivalent to Equation (9), as long as the initial condition is un(t=0)=0 at the wall.
On the other hand, using relations (4), Equation (13) leads to:

��

�t
+
(

�
�un
�n

+ 1

c

�p
�n

)
=0 (15)

Physically, a zero admittance implies �p/�n=0 on a wall. Therefore, Equations (10) and (15)
should be physically equivalent at the wall. From a discrete point of view, however, derivatives
(�/�n) are replaced by differences (�/�n). A simple consequence is that, most often

�p

�n

∣∣∣∣
��

�=0 (16)

where �/�n is the discrete first-order derivative operator. Thus, the discrete counterparts of
Equations (10) and (13) are not equivalent (Table II). We will see later that the added term �p/�n|��
(called here ABC term) has an important stabilization role.

4. A SIMPLE TEST FOR WALL BCs

This section presents a simple one-dimensional numerical setup, which allows to verify the stability
and dissipation of BCs formulations at walls.

4.1. Numerical setup

Consider an acoustic eigenmode between two walls in a one-dimensional cavity. Figure 2 gives a
simple sketch of the problem. The mean state is such that: (�̄,0)T=cst and A=cst in Equation (8).
The initial conditions of the problem are

p′(x, t=0) = �′(x, t=0)=0

u′(x, t=0) = p0
�̄c

sin
(�x

L

) (17)
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1140 N. LAMARQUE ET AL.

Figure 2. Sketch of the one-dimensional cavity problem. Left: instantaneous velocity at t=kT . Right:
instantaneous pressure at t=3T/2+kT , with k∈N.

with L=1m and p0= p̄/100. All values are non-dimensionalized and the mode period is T =2L/c.
The exact solution for pressure in the absence of viscous dissipation is then:

p′(x, t)=−p0 cos
(�x

L

)
sin

(
�ct

L

)
(18)

4.2. Taylor–Galerkin discretization

The chosen numerical scheme in this study belongs to the TG family of discretizations, as they are
often chosen to carry out an LES in complex geometries with unstructured meshes [3, 13]. Those
schemes have been developed adapting the ideas of Lax and Wendroff in the context of finite
elements [18]. The classical Galerkin centred-in-space scheme has very good dispersion properties
but is also unconditionally unstable, when associated with an explicit Euler time marching method
[18]. Therefore, stabilization is needed and obtained by reaching higher-order time accuracy. To
do this, the solution is first expanded with Taylor series in time and time derivatives are replaced
by space ones. Then, Galerkin space discretization is used [18]. The resulting full discretizations
are often cheaper, more accurate and more stable than classical centred schemes with an explicit
Runge–Kutta or semi-implicit Crank–Nicolson time marching methods in the context of turbulent
flows in complex geometries.

4.2.1. Inner domain. The domain �=[0,1] is spatially discretized in N regular cells and h is the
step in space. System (7) is discretized using the second-order TG scheme [18, 37, 38] with P1
linear elements, which is a classical numerical scheme used with unstructured grids, second order
in space and time. The mass matrix is lumped to simplify the study. The application of the lumped
TG scheme (noted TG2 throughout the paper) to Equation (7) yields

(Un+1
I −Un

I )h=−�t
∫

�
A
dUh

dx

∣∣∣∣n NI dx+ �t2

2

∫
�
A

d

dx

(
A
dUh

dx

∣∣∣∣n
)
NI dx (19)

where

Un
h(x)=

∑
J
Un

J NJ (x)

and NI is the hat shape function associated with node I . Equation (19) gives with classical finite
differences operators

�n+1
I =�nI −

�̄�t

h
�0u

n
I +

1

2

c2�t2

h2
�2�nI (20)

un+1
I =unI −

c2

�̄

�t

h
�0�

n
I +

1

2

c2�t2

h2
�2unI (21)
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where

�0u
n
I = 1

2 (u
n
I+1−unI−1) and �2unI =unI+1−2unI +unI−1 (22)

As the computational grid is regular here, a more classical Lax–Wendroff finite difference scheme
[39] would have also given Equations (20) and (21) for the inner domain.

4.2.2. Numerical boundary schemes—first derivative. On the boundaries, differences are not
centred anymore. The simplest and most usual approximations of the first derivatives are therefore‡

�U
�x

∣∣∣∣
0
≈ 1

h
�+U0= 1

h
(U1−U0) and

�U
�n

∣∣∣∣
0
=− �U

�x

∣∣∣∣
0

(23)

�U
�x

∣∣∣∣
N

≈ 1

h
�−UN = 1

h
(UN −UN−1) and

�U
�n

∣∣∣∣
N

=+ �U
�x

∣∣∣∣
N

(24)

and U0 and UN can be imposed as BCs.

4.2.3. Numerical boundary schemes—second derivative. The case of the second derivative is more
complicated. Integration by parts of the last term of Equation (19) yields at node I :

LL I (Un)=
∫

�

d

dx

(
c2

dUh

dx

∣∣∣∣n
)
NI dx=

[
c2

dUh

dx

∣∣∣∣n NI

]x=L

x=0︸ ︷︷ ︸
BTI (Un)

−
∫

�
c2

dUh

dx

∣∣∣∣n dNI

dx
dx︸ ︷︷ ︸

LLin
I (Un)

(25)

If I ∈�\��, then BTI (Un)=0 and LL I (Un)=(c2/h)�2Un
I , which corresponds to the second

terms of the right-hand sides of Equations (20) and (21). On the other hand, if I ∈��, which gives
I =0 or I =N , then BTI (Un) has to be calculated. The case of inviscid flows arises a difficulty, as
there is no natural BCs for dUh/dx |�� to express BTI (Un), as for parabolic or elliptic problems.
As we deal with linear elements, first derivatives are constant inside an element. The choice is
then to consider that dUh/dx |�� is equal to dUh/dx inside the element adjacent to the boundary.
Therefore, using Equation (25), this is equivalent to set LL0 and LLN to zero, which is equivalent
to use first-order explicit Euler time marching instead of Lax–Wendroff method for the temporal
integration at the boundaries. For instance, at node 0, using Equation (25), the numerical boundary
scheme is:

LL0(Un) = BT0(Un)+LLin
0 (Un) (26)

= −c2

h
(Un

1−Un
0)−

c2

h
(Un

1−Un
0)

−1

h
h (27)

= 0 (28)

‡Higher-order evaluations of derivatives can be constructed using larger stencils but this is difficult and expensive
on unstructured meshes.
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4.2.4. Boundary conditions. For Dirichlet BC, the discretization at the boundaries is then

�n+1
0 =�n0− �̄�t

h
(un1−un0) (29)

�n+1
N =�nN − �̄�t

h
(unN −unN−1) (30)

u0 and uN are imposed to be zero.
For characteristic BCs, the discretizations of Equations (14)–(15) are:

�n+1
0 =�n0− �̄�t

h
(un1−un0)+

c�t

h
(�n1−�n0) (31)

un+1
0 =un0 (32)

�n+1
N =�nN − �̄�t

h
(unN −unN−1)−

c�t

h
(�nN −�nN−1) (33)

un+1
N =unN (34)

As u00=0 and u0N =0, the only differences between Equations (29)–(30) and Equations (31)–(34)
are the ABC terms in the continuity equation for characteristic BCs.

5. RESULTS

In this section, the influence of the ABC terms is studied using two methods: (1) comparison of
amplification matrices and (2) comparison of simulation results. For both methods, the test case
is the 1D acoustic eigenmode of Figure 2.

5.1. Amplification matrices

Let U be the solution vector containing the degrees of freedom of the problem (the velocity and
pressure at all grid points). The amplification matrix Q is defined by [40]

Un+1=QUn (35)

and§ Un =(�n0,u
n
0, . . . ,�

n
N ,unN )T. For the present problem, Appendix A gives all terms of the

matrix for both methods (Dirichlet and characteristic). To be stable, it is necessary for the spectral
radius �(Q) to be less than or equal¶ to 1 [40]. Indeed the initial solution can be decomposed in
a sum of eigenvectors Vi :

U0=
N∑
i=0

�iVi (36)

§ It should be noted that un0 and unN do not belong to Q in the case of Dirichlet BCs, as they are fixed.
¶The condition for Lax–Richtmeyer stability is: �(Q)�1+�/N (� strictly positive and not depending on N ) [41],
but in the cases studied here, it is enough to use the condition �(Q)�1.
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STABILITY AND DISSIPATION OF WALL BCs 1143

Then, solution vector at time t=(n+1)�t is

Un+1=QU0=
N∑
i=0

�ni �iVi ∝�nK �KVK +O ·T (37)

where �i is the eigenvalue associated with Vi and K is the index of the eigenvalue, which has the
greater modulus (except if |�K |=1). O ·T contains all the other terms, including those with �i =1
(corresponding to the steady-state part of solution). Equation (37) simply shows that the long-term
behaviour of U is similar to �nK �KVK and will lead to instability if |�K |>1.

Figures 3 and 4 show the spectra in complex plane obtained with Dirichlet and characteristic
BCs. The mesh contains 15 points. Stability domain is represented by the unit circle centred around
origin. If an eigenvalue lies outside it, then the method is unstable. Moreover, one should expect

Figure 3. Left: complete spectrum of amplification matrix Q for Dirichlet BCs and 15 mesh nodes. Right:
zoom on unstable eigenvalues corresponding to the box of the left figure. CFL number: 0.5.

Figure 4. Left: complete spectrum of amplification matrix Q for NSCBC and 15 mesh nodes. Right: zoom
on unstable eigenvalues corresponding to the box of the left figure. CFL number: 0.5.
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1144 N. LAMARQUE ET AL.

that for big enough n, |�K |n gives the damping/amplification factor of the signal. It also implies
that the closer to the unit circle the eigenvalues are, the less dissipative the discretization is.

In the studied cases (with TG2 scheme), the complete discretization is unconditionally unstable
when using Dirichlet BCs, as there are some eigenvalues with a modulus greater than one, for
all Courant–Friedrichs–Lewy (CFL) values. On the other hand, it is conditionally stable with
characteristic BCs and the stability limit is given by the CFL number: �=c�t/h�1. Besides, the
eigenvalues also globally lie further from the unit circle than those obtained with Dirichlet BCs.
Consequently, as expected, the ABC terms have a stabilizing effect.

5.2. Simulations

The test case of Figure 2 is now run in a direct numerical simulation code using TG2 scheme and
both BCs are compared. Figure 5 first presents the temporal variation of pressure fluctuation for
Dirichlet BCs, while Figure 6 gives the same results for characteristic BCs at the probe indicated on
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Figure 5. Pressure fluctuations at the probe of Figure 2. Dirichlet BCs with 15 mesh nodes. (Plain line:
simulation, dash line: prediction (Equation (37)) with |�K |.) CFL number: 0.5.
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Figure 6. Pressure fluctuations at the probe of Figure 2. NSCBC with 15 (left) and 31 (right) mesh nodes.
(Plain line: simulation, dash line: prediction (Equation (37)) with |�K |.) CFL number: 0.5.
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STABILITY AND DISSIPATION OF WALL BCs 1145

Figure 2 on two different meshes.‖ As predicted by the amplification matrix analysis of Section 5.1,
the pressure signal diverges when using Dirichlet BCs, whereas it is damped with NSCBC, hence
ensuring the stability of the problem. It is also evident that refining the mesh limits, the damping
effect is due to NSCBC. It should also be added that, as suggested by the matrix analysis, the
largest eigenvalue controls the envelope of the pressure fluctuation: the signal Un behaves like
�nK �KVK as shown by Equation (37). This simple numerical simulation case thus confirms the
stabilization induced by the added pressure term.

5.3. Further analysis

5.3.1. Accuracy of ABC terms. It is interesting to focus now on the ABC terms and highlight
why they stabilize the calculations. A first reason is that these terms are clearly generated when a
characteristic analysis is used in the momentum equation. Using simply the continuity equation and
failing to identify waves as done in the Dirichlet method means that the acoustic wave entering the
domain through the wall (L+ in Equation (4)) is computed using downwind differencing, which
is intrinsically unstable. Sections 5.1 and 5.2 essentially recover this expected unstable behaviour.
A second reason can be provided by expanding the ABC terms as follows:

−c
��

�n

∣∣∣∣
x=0

=c
��

�x

∣∣∣∣
x=0

+ 1

2
ch

�2�
�x2

∣∣∣∣∣
x=0

+O(h2) (38)

−c
��

�n

∣∣∣∣
x=L

=−c
��

�x

∣∣∣∣
x=L

+ 1

2
ch

�2�
�x2

∣∣∣∣∣
x=L

+O(h2) (39)

Equations (38) and (39) show that using these non-centred differences to express characteristic
waves L implies the addition of a diffusive term 1

2ch(�2�/�x2) in the continuity equation. This
also explains the origin of the stabilization induced by NSCBC.

The inner local order of accuracy is 2. Theoretically, even though boundary derivatives are
first-order accurate, the global convergence rate remains second order [42]. The question is then
whether this additional term deteriorates the global accuracy of the calculation, as it is also first-
order accurate. Simulations, using 9, 11, 15, 31, 45 and 61 mesh nodes, have been carried out to
measure the global error on density:

L2(��)=
N∑
i=0

|�i −�exact(xi )|2 (40)

Figure 7 indicates that the L2-norm of the density error is close to 2, proving that the additional
term does not spoil the global accuracy of the scheme while ensuring stability.

5.3.2. Higher-order BCs. A possible method to avoid problems described in the previous section
would be to have second-order accuracy at the boundaries to reduce dissipation. Moreover, in the
case of simulations using higher-order schemes (more than second order within the computational
domain), the first-order numerical boundary scheme can spoil the global accuracy of the method,
which is not desirable even though robustness is ensured. Indeed, dissipation introduced by ABC

‖As the simulations always diverge with Dirichlet BCs, only one case is presented.
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Figure 7. NSCBC method: order of convergence of L2-norm density error (40) with
respect to space discretization.

Figure 8. Pressure fluctuations at the probe of Figure 2. Inner discretization: fourth-order explicit centred
scheme and NSCBC formulation with first-order numerical boundary scheme. CFL number: 0.5.

terms is then much too high at the walls and may destroy the benefits of using a high-order scheme
within the domain.

To determine the importance of wall BCs versus inner domain scheme accuracy, the test case of
Figure 2 was run again using the same wall BCs but a more precise numerical scheme within the
domain. The discretization is now a fourth-order accurate explicit centred scheme with fourth-order
accurate Runge–Kutta time marching method, together with NSCBC formulation and a first-order
numerical boundary scheme at the walls. Except for the numerical scheme, the test case remains
the same. While the inner discretization shows great accuracy, the dissipation of the pressure
signal is quite close to that obtained with TG2 scheme (Figure 6—left). This test confirms that
the dissipation of the acoustic wave observed in Figure 6—left or 8 is not due to the inner scheme
but mainly to the wall BCs, highlighting the importance of the wall treatment.
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Figure 9. Effect of high-order wall BCs. Left: zoom on eigenvalues with modulus equal or close to 1.
Right: predictions with |�K |. CFL number: 0.05.

An obvious solution to improve the results of Figure 6—left or 8 is then to change the numerical
boundary scheme used for first spatial derivatives. For example, approximations (23) and (24) can
be, respectively, replaced by:

�U
�x

∣∣∣∣
0
≈ 1

2h
(−U2+4U1−3U0) and

�U
�n

∣∣∣∣
0
=− �U

�x

∣∣∣∣
0

(41)

�U
�x

∣∣∣∣
N

≈ 1

2h
(3UN −4UN−1+UN−2) and

�U
�n

∣∣∣∣
N

=+ �U
�x

∣∣∣∣
N

(42)

As expected, the complete scheme is then much less dissipative (eigenvalues with modulus closer
to 1—see Figure 9). Nevertheless, robustness is also shrunk: CFL number must be less than 0.1,
otherwise eigenvalues with modulus strictly greater than 1 appear in the spectrum and numerical
instabilities appear in the calculation.

Indeed approximations (41) and (42) are second-order accurate, which implies that the first
diffusive term of the truncation error of ABC terms is now a fourth derivative (which is proportional
to h3). They are still dissipative and stabilizing (which remains an interesting feature), though far
less than approximations (38)–(39). Thus, while increasing the order of accuracy of the numerical
boundary scheme has limited interest for TG2 scheme,∗∗ it should be considered with care for
higher-order methods.

6. A SIMPLE MULTIDIMENSIONAL EXAMPLE

In this section, the evolution of a simple 2D longitudinal/transversal acoustic mode in a duct is
presented as a demonstration of the stabilizing effect of the NSCBC method in a multidimensional
configuration.

∗∗The gain of accuracy is sensible after a long time, but the scheme is not as stable and in the case of unstructured
grids, the numerical boundary scheme is complicated to express.
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Figure 10. Sketch of the two-dimensional duct problem. The y-direction is periodic.

6.1. Infinite duct

As an illustration, consider a propagating longitudinal acoustic mode (y-direction) with a transverse
structure (x-direction) in a duct, as shown in Figure 10.

The solution of such an eigenmode is given by [31]

p′(x, y, t)= p11 cos

(
�x

Lx

)
sin(ky y−	t) (43)

u′(x, y, t)= p11�

�̄Lx	
sin

(
�x

Lx

)
cos(ky y−	t) (44)

v′(x, y, t)=− p11ky
�̄	

cos

(
�x

Lx

)
cos(ky y−	t) (45)

with p11 a real constant, Lx the duct width, ky the wave number in the direction y and 	=2�/T
the frequency. Left and right boundaries are solid slipping walls handled with either Dirichlet or
characteristic methods. The computational domain � is periodic in the direction y (infinite duct),
Ly =2Lx and ky =kx =�. This choice of a periodic duct rather than a squared cavity bordered
with solid walls is motivated by the will to avoid corners, which could bias the results and need
special treatment [28]. � is discretized with regular P1 triangles (15 nodes in the x-direction, 28
in the y-direction) and the numerical scheme is still TG2. CFL number is 0.5. The initial condition
is given by Equations (43)–(45) with t=0.

6.2. Results

Figure 11 gives a comparison between the pressure signal on a wall (Figure 10) for simulations
run with walls treated either with Dirichlet or characteristic BCs. It is clear that the pressure
fluctuation diverges when Dirichlet BCs are used, while it is damped when walls are handled with
characteristic BCs.

As shown on Figure 12, computations using either Dirichlet or characteristic wall BCs give
quite similar pressure fluctuations for short times. The fields are close and there is only a little
difference in amplitude. Moreover, the two calculations fit the exact solution well, aside from a
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Figure 11. Pressure fluctuations at the probe of Figure 10. Left: Dirichlet BCs, right: characteristic BCs.

Figure 12. Pressure fluctuation magnitude for t=8T . Left: Dirichlet BCs (white: 0, black: 0.93), right:
characteristic BCs (white: 0, black: 0.88).

little small phase error. For longer times, the physical sinusoidal solution is still retrieved in the
simulation with characteristic wall BCs (there is obviously some phase error due to the numerical
scheme and spurious damping mainly because of the ABC term—see Figure 13—right) and the
computation is stable. On the other hand, the simulation with Dirichlet BCs eventually suffers
from a non-linear behaviour and strong numerical instabilities that lead to unbounded non-physical
oscillations (Figure 13—left).

To sum things up, the conclusions drawn in the previous sections with one-dimensional analyses
also hold in multidimensional studies: Dirichlet and characteristic BCs are no more equivalent as
soon as the equations are discretized. While the first can provoke strong numerical instabilities
and may lead to the divergence of the simulations, the second have a stabilizing effect.
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Figure 13. Pressure fluctuations at the probe of Figure 10. Left: Dirichlet BCs, on a longer span of time,
right: characteristic BCs versus exact solution (zoom on the first 20 periods).

7. CONCLUSION

Building BCs at walls in compressible simulation is a difficult topic if one wants to obtain both
robustness and limited dissipation. This paper provides a comparison between two methods to treat
solidwalls in compressibleflowsimulations.Thefirst is basedonDirichlet (orNeumann) formulation,
which consists of imposing a zero normal velocity (or a zero pressure gradient) at the wall, while
the second is based on characteristic wave decomposition (NSCBC method). Even though they are
supposed to be physically equivalent, they do not solve the same discretized equations. Theoretical
analysis gives rise to additional pressure terms in the continuity equation in the case of characteristic
BCs called here ABC terms. After discretization, it is shown that ABC terms have a stabilizing effect,
which is a very desirable property in non-linear simulations.Numerical calculations and amplification
matrix eigenvalues confirm the increased robustness of NSCBC formulation.

While it does not seem to be a serious issue, the stabilizing effect can be too strong when
dealing with higher-order methods because of the dissipation induced by ABC terms. In such a
case, higher-order approximations have to be considered, which is not a problem when the mesh
is structured but can be a harder task for unstructured meshes.

In terms of applications, these results show that Dirichlet methods at walls should not be
used in configurations where the acoustic damping of cavities is computed. These methods will
lead to wrong damping coefficients and sometimes to numerical instabilities. Using characteristic
formulation such as NSCBC leads to stable schemes but also to a dissipation level, which is
controlled by the order of accuracy used for wall derivatives much more than by the precision of
the numerical scheme within the domain. This means that wall treatments will be very important
in such compressible flows.

APPENDIX A

This section presents the terms of matrix Q for Dirichlet and NSCBC formulations. Solution vector
U∈R2N+2 and is written:

U=(�0,u0,�1,u1, . . . ,�J ,uJ , . . . ,�N−1,uN−1,�N ,uN )T
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Let us decompose the matrix in three parts

Q=Qc+Ql +Qr

where Qc is a square matrix for the discretization for degrees of freedom (u1,�2, . . . ,�N−2,

uN−2,uN−1), Ql and Qr are, respectively, containing the left and right numerical boundary
schemes with BCs.

A.1. Dirichlet BCs

As u0 and uN are imposed to be zero, they are not degrees of freedom anymore. As a consequence,
the corresponding lines in vector U and matrix Q are suppressed, then U∈R2N and Q∈M2N (R).
We give discretization for degrees of freedom (�0,�1,u1) and (�N−1,uN−1,�N ). The other lines
are completed with zeros. Then, using Equations (20), (21), (29) and (30) gives

Ql =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 − �̄�t

h
0 . . . . . . . . . 0

1

2

c2�t2

h2
1− c2�t2

h2
0

1

2

c2�t2

h2
− �̄�t

2h
0 . . . 0

c2

�̄

�t

2h
0 1− c2�t2

h2
−c2

�̄

�t

2h

1

2

c2�t2

h2
0 . . . 0

0 . . . . . . . . . . . . . . . . . . 0

... . . . . . . . . . . . . . . . . . .
...

0 . . . . . . . . . . . . . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Qr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . . . . . . . . . . . . . 0

... . . . . . . . . . . . . . . . . . .
...

0 . . . . . . . . . . . . . . . . . . 0

0 . . . 0
1

2

c2�t2

h2
�̄�t

2h
1− c2�t2

h2
0

1

2

c2�t2

h2

0 . . . 0
c2

�̄

�t

2h

1

2

c2�t2
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0 1− c2�t2

h2
−c2
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h
1
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A.2. NSCBC

The same method is used for NSCBC formulation. In this case, u0 and uN are given by relations
(32) and (34). Therefore, U∈R2N+2 and Q∈M2N+2(R). For this formulation, only discretizations
for unknowns (�0,u0) and (�N ,uN ) are stored in Ql and Qr . Using (31) and (33) yields:

Ql =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− c�t

h

�̄�t

h

c�t

h
− �̄�t

h
0 . . . . . . . . . . . . 0

0 1 0 0 0 . . . . . . . . . . . . 0

0 . . . . . . . . . . . . . . . . . . . . . . . . 0

... . . . . . . . . . . . . . . . . . . . . . . . .
...

0 . . . . . . . . . . . . . . . . . . . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Qr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . . . . . . . . . . . . . . . . . . . 0

... . . . . . . . . . . . . . . . . . . . . . . . .
...

0 . . . . . . . . . . . . . . . . . . . . . . . . 0

0 . . . . . . . . . . . . 0
c�t

h

�̄�t

h
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h
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h

0 . . . . . . . . . . . . 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A.3. Matrix Qc

Matrix Qc has the size of Ql and Qr and is filled using (20) and (21), except for its first and last
lines,†† which contain only zeros (those corresponding to non-zero lines of Ql and Qr ).

Qc=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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...

... 0
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††Dirichlet BCs: the first and last three lines are zero; NSCBC: The first and last two lines are zero.
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